In geometry, a three-dimensional space ( 3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values ( coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region (or 3D domain), a solid figure.
Technically, a tuple of Real number can be understood as the Cartesian coordinates of a location in a -dimensional Euclidean space. The set of these -tuples is commonly denoted and can be identified to the pair formed by a -dimensional Euclidean space and a Cartesian coordinate system. When , this space is called the three-dimensional Euclidean space (or simply "Euclidean space" when the context is clear). In classical physics, it serves as a model of the physical universe, in which all known matter exists. When relativity theory is considered, it can be considered a local subspace of space-time. While this space remains the most compelling and useful way to model the world as it is experienced, it is only one example of a 3-manifold. In this classical example, when the three values refer to measurements in different directions (coordinates), any three directions can be chosen, provided that these directions do not lie in the same plane. Furthermore, if these directions are pairwise perpendicular, the three values are often labeled by the terms width/breadth, height/depth, and length.
In the 17th century, three-dimensional space was described with Cartesian coordinates, with the advent of analytic geometry developed by René Descartes in his work La Géométrie and Pierre de Fermat in the manuscript Ad locos planos et solidos isagoge (Introduction to Plane and Solid Loci), which was unpublished during Fermat's lifetime. However, only Fermat's work dealt with three-dimensional space.
In the 19th century, developments of the geometry of three-dimensional space came with William Rowan Hamilton's development of the quaternions. In fact, it was Hamilton who coined the terms scalar and Euclidean vector, and they were first defined within his geometric framework for quaternions. Three dimensional space could then be described by quaternions which had vanishing scalar component, that is, . While not explicitly studied by Hamilton, this indirectly introduced notions of basis, here given by the quaternion elements , as well as the dot product and cross product, which correspond to (the negative of) the scalar part and the vector part of the product of two vector quaternions.
It was not until Josiah Willard Gibbs that these two products were identified in their own right, and the modern notation for the dot and cross product were introduced in his classroom teaching notes, found also in the 1901 textbook Vector Analysis written by Edwin Bidwell Wilson based on Gibbs' lectures.
Also during the 19th century came developments in the abstract formalism of vector spaces, with the work of Hermann Grassmann and Giuseppe Peano, the latter of whom first gave the modern definition of vector spaces as an algebraic structure.
Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there are an infinite number of possible methods. For more, see Euclidean space.
Below are images of the above-mentioned systems.
Two distinct lines can either intersect, be Parallel line or be Skew lines. Two parallel lines, or two intersecting lines, lie in a unique plane, so skew lines are lines that do not meet and do not lie in a common plane.
Two distinct planes can either meet in a common line or are parallel (i.e., do not meet). Three distinct planes, no pair of which are parallel, can either meet in a common line, meet in a unique common point, or have no point in common. In the last case, the three lines of intersection of each pair of planes are mutually parallel.
A line can lie in a given plane, intersect that plane in a unique point, or be parallel to the plane. In the last case, there will be lines in the plane that are parallel to the given line.
A hyperplane is a subspace of one dimension less than the dimension of the full space. The hyperplanes of a three-dimensional space are the two-dimensional subspaces, that is, the planes. In terms of Cartesian coordinates, the points of a hyperplane satisfy a single linear equation, so planes in this 3-space are described by linear equations. A line can be described by a pair of independent linear equations—each representing a plane having this line as a common intersection.
Varignon's theorem states that the midpoints of any quadrilateral in form a parallelogram, and hence are coplanar.
The volume of the ball is given by
and the surface area of the sphere is Another type of sphere arises from a 4-ball, whose three-dimensional surface is the 3-sphere: points equidistant to the origin of the euclidean space . If a point has coordinates, , then characterizes those points on the unit 3-sphere centered at the origin.
This 3-sphere is an example of a 3-manifold: a space which is 'looks locally' like 3-D space. In precise topological terms, each point of the 3-sphere has a neighborhood which is homeomorphic to an open subset of 3-D space.
+ Regular polytopes in three dimensions |
Simple examples occur when the generatrix is a line. If the generatrix line intersects the axis line, the surface of revolution is a right circular cone with vertex (apex) the point of intersection. However, if the generatrix and axis are parallel, then the surface of revolution is a circular cylinder.
There are six types of non-degenerate quadric surfaces:
The degenerate quadric surfaces are the empty set, a single point, a single line, a single plane, a pair of planes or a quadratic cylinder (a surface consisting of a non-degenerate conic section in a plane and all the lines of through that conic that are normal to ). Elliptic cones are sometimes considered to be degenerate quadric surfaces as well.
Both the hyperboloid of one sheet and the hyperbolic paraboloid are , meaning that they can be made up from a family of straight lines. In fact, each has two families of generating lines, the members of each family are disjoint and each member one family intersects, with just one exception, every member of the other family. Each family is called a regulus.
The dot product of two vectors and is defined as:
The magnitude of a vector is denoted by . The dot product of a vector with itself is
Without reference to the components of the vectors, the dot product of two non-zero Euclidean vectors and is given by
In function language, the cross product is a function .
The components of the cross product are and can also be written in components, using Einstein summation convention as where is the Levi-Civita symbol. It has the property that .
Its magnitude is related to the angle between and by the identity
The space and product form an algebra over a field, which is not commutative nor associative, but is a Lie algebra with the cross product being the Lie bracket. Specifically, the space together with the product, is isomorphic to the Lie algebra of three-dimensional rotations, denoted . In order to satisfy the axioms of a Lie algebra, instead of associativity the cross product satisfies the Jacobi identity. For any three vectors and
One can in n dimensions take the product of vectors to produce a vector perpendicular to all of them. But if the product is limited to non-trivial binary products with vector results, it exists only in three and seven dimensions.
On the other hand, there is a preferred basis for , which is due to its description as a Cartesian product of copies of , that is, . This allows the definition of canonical projections, , where . For example, . This then allows the definition of the standard basis defined by where is the Kronecker delta. Written out in full, the standard basis is
Therefore can be viewed as the abstract vector space, together with the additional structure of a choice of basis. Conversely, can be obtained by starting with and 'forgetting' the Cartesian product structure, or equivalently the standard choice of basis.
As opposed to a general vector space , the space is sometimes referred to as a coordinate space.
Physically, it is conceptually desirable to use the abstract formalism in order to assume as little structure as possible if it is not given by the parameters of a particular problem. For example, in a problem with rotational symmetry, working with the more concrete description of three-dimensional space assumes a choice of basis, corresponding to a set of axes. But in rotational symmetry, there is no reason why one set of axes is preferred to say, the same set of axes which has been rotated arbitrarily. Stated another way, a preferred choice of axes breaks the rotational symmetry of physical space.
Computationally, it is necessary to work with the more concrete description in order to do concrete computations.
This is physically appealing as it makes the translation invariance of physical space manifest. A preferred origin breaks the translational invariance.
and in index notation is written
The divergence of a (differentiable) vector field F = U i + V j + W k, that is, a function , is equal to the scalar-valued function:
In index notation, with Einstein summation convention this is
Expanded in Cartesian coordinates (see Del in cylindrical and spherical coordinates for spherical and cylindrical coordinate representations), the curl ∇ × F is, for F composed of Fx,:
\\ F_x & F_y & F_z \end{vmatrix}
where i, j, and k are the for the x-, y-, and z-axes, respectively. This expands as follows:Arfken, p. 43.
In index notation, with Einstein summation convention this is where is the totally antisymmetric symbol, the Levi-Civita symbol.
For a vector field F : U ⊆ R n → R n, the line integral along a piecewise smooth curve C ⊂ U, in the direction of r, is defined as
where · is the dot product and r: a, → C is a bijective parametrization of the curve C such that r( a) and r( b) give the endpoints of C.
A surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analog of the line integral. To find an explicit formula for the surface integral, we need to parameterize the surface of interest, S, by considering a system of curvilinear coordinates on S, like the latitude and longitude on a sphere. Let such a parameterization be x( s, t), where ( s, t) varies in some region T in the plane. Then, the surface integral is given by
A volume integral is an integral over a three-dimensional domain or region. When the integrand is trivial (unity), the volume integral is simply the region's volume. It can also mean a triple integral within a region D in R3 of a function and is usually written as:
Let . Then
The left side is a volume integral over the volume , the right side is the surface integral over the boundary of the volume . The closed manifold is quite generally the boundary of oriented by outward-pointing Surface normal, and is the outward pointing unit normal field of the boundary . ( may be used as a shorthand for .)
In differential geometry the generic three-dimensional spaces are 3-manifolds, which locally resemble .
|
|